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Asymptotic Expansions of Multiple Integrals 
of Rapidly Oscillating Functions 

By T. Iwaniec and A. Lutoborski 

Abstract. Expansions of multiple integrals 

Jbi bn 

I *b jb w(all,..., anXn)g(xl,. .., xn) dxl ... dx, 
al Jn 

where w is a function on Rn which is (bk - ak)-periodic in the kth variable, k = 
1, . .. , n, and g is smooth, are given in terms of negative powers of the integers al,... ., an. 
Estimates of the remainder term in the expansion are also given. 

Introduction. Let w be a function with integrable pth power and g a smooth 
function on an interval Q in Rn. Denote by iw the periodic extension of w to Rn. 
Set orx = (uxl,X . . . OnXn) for x E Rn and a = (Ul, . . ., an), an n-tuple of integers. 
Note that if a,, ... , an are large then x -* w(ax) is a rapidly oscillating function. 

Our purpose is to obtain an expansion of the integral 

I (w; g) = w (ax)g(x) dx 

in terms of negative powers of a, ... an. We recall the standard result, cf. [31, 
characterizing the asymptotic behavior of I, (w; g) as 

lim f v (ax) g(x) dx = (- w (x) dx) (1 g(x) dx) 

an + oo 

The right-hand side of this equality is exactly the zero-order term in our expan- 
sion. We find explicitly the higher-order terms which involve the integrals of the 
derivatives of g and the coefficients dependent on the moments of w. This is why 
we say that our expansion is of Euler-Maclaurin type. We also derive estimates of 
the magnitude of the remainder in the expansion and give sufficient conditions for 
convergence of the infinite expansion. Finally, we note that the expansion formulas 
for the multiple integral Ia (w; g) are essentially based on the study of the boundary 
value problem 

div Z = 

where f E LP(Q) is given and Z = [Zi,... , Zn] is an unknown vector field whose 
kth component has zero trace on the kth face of Q. We solve explicitly this problem, 
which seems to be of independent interest. 
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1. Preliminaries and Euler-Maclaurin Type Expansions of Integrals. 
For ease of reference we begin by listing some standard function spaces used in this 
article. Let Q be a nonempty, open subset of Rn. We denote by LP(1), 1 < p < 00, 
the usual space of real-valued functions f satisfying If lip = (fo If(x)IP dx)1/P < oo 
if 1 < p < oo, and if p = oo, then L? (Q) denotes the space of essentially bounded 
functions with norm I f I I00 . 

The Sobolev space Wm'P(Q), 0 < m and 1 < p < oo, consists of functions f sat- 

isfying If lIm,p = (f, Fm I=0 D"'f (x)IP dx)1/P < 0 for 1 < p < 00 and IIf ilm, = 

maxo<lyl<m ID"If loo < oo, where Dy = Dy* Dln for - = (-, ...,. n) and Dk 
denotes the partial derivative with respect to Xk. As usual, Wom' P(Q) denotes the 
closure of CO?(Q) in Wm,P(Q). 

We begin with a brief summary of results concerning Euler-Maclaurin type ex- 
pansions of a class of integrals of functions defined on the interval Q = (0,1) and 
introduced in [2]. We define linear operators P: LP(Q) -- LP(Q), T: LP(Q) 
LP (Q), S : LP (Q) -W 1,P (Q) and Z: LP (Q) -, Wd P (Q) by the formulas: 

1 

(1.1) Pf = f f(t)dt, 

1 

(1.2) (Tf)(x) = f(x) - f(t) dt, 

x 

(1.3) (Sf)(X) = f (t) dt, 

(1.4) (Zf)(x) = f f(t) dt - f(s)] ds, 

for every f E LP(Q). We note that T = Id - P, where Id is the identity operator, 
Z = -ST and PT = 0. If w E LP(Q) then (Zw)(0) = (Zw)(1) = 0 and (Zw)' = 
Pw - w, so that indeed Zw E WOdP(Q). Hence, for any g E Wl,q(Q), where q 
satisfies 1/p + l/q = 1, integration by parts yields 

(1.5) f w(x)g(x) dx - f w(x) dx g(x)dz = f(Zw)(x)g'(x) dx. 

The above expansion formula can be used recursively in computing the right- 
hand side integral in (1.5). To do this, set ZO = Id, Z1 = Z and Zi = ZZi-1 for 
j > 1 and aj(w) - fo(Ziw)(x) dx, then 

1 N 1 1 
(1.6) J w(x)g(x) dx = , aj(w) g(j)(x) dx + 1 ZN+l(w)(X)g(N+l)(x) dx 

? j=o ? ?= 

for any g E WN+lq(Q). 

Expansion (1.6) of the integral f0' w(x)g(x) is referred to as an Euler-Maclaurin 
type expansion. In [2] the coefficients aj(w) were expressed in terms of moments 
of w, an estimate of IIZN+11100 was obtained and the relation between (1.6) and 
Euler-Maclaurin quadratures, cf. [4], was investigated. However, a more detailed 
analysis of the norms of the operators T and Z is necessary before expansions of 
multidimensional integrals can be studied. 
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LEMMA 1. If p E [1,oo] then 

(1.7) JITIlp < 211- (2/p) I< 21 

1 /l-\I12/p) Ii1 (1.8) <11 7)l(/) 

and the first inequality in both (1.7) and (1.8) is sharp for p = 1, 2 and p = oo. 

Proof. We first prove (1.7). We begin with p = 1, 2. Let f E L1(Q); then 

(1.9) IITf Ii, < IlfIIi + ./1 f(t)dt < 211fll. 

This estimate is sharp. Indeed if X(O,e] denotes the characteristic function of 
the interval (0, E], then for f = X(O,e], where 0 < E < 1, we have that Tf = 
(1 - E)X(o,,] - EX(,i) and hence IITf Il = 2(1 -) )II f II . In the case p = 2, for 
f E L2(Q) we have 

2 

(1.10) lITf! 12 = I! I2 -|J f(t) dt ? IIfII2 

and equality holds only if f has zero average. In the case f E LI (Q) it is clear 
that 

(1.11) glIf Iloo < ?lf Iloo + f (t) dt < 211f Iloo, 

and the estimate is sharp because for f = X(O,e] -X(e,i) we have Tf = 2(1- E)X(O,] - 
2EX(e,1) and hence IIT!f ll, = 2(1 - E) = 2(1 -) eIIf lloo In the case of intermediate 
p V {1, 2, oo}, inequality (1.7) is obtained by an interpolation argument based on 
the M. Riesz-Thorin theorem. 

We next prove (1.8). The proof for p = 2 is based on the following sharp Sobolev 
inequality, cf. [7], 

11u112 < 1 
u'112, Vu E Wol 2(Q). 

Setting u = Zf, where f e L2(Q), in that inequality, and using (1.10), we obtain 

(1.12) IlIZf 112 < 11(Zf)'112 = -IT!f 112 < IIf 112. 

Equality will hold for f (x) = cos rx since 

Zf (x) =--sinm7rx and llZf 112 = -11 sin7rX112 = -I| cosr = 1 1lf 112. 

To prove (1.8) when p = 1 and p = oo, we write 

(1.13) (Zf )(x) = f K(x, t) f (t) dt, 

where 
K l - x if 0 < t < xi 
K x if x < t < 1. 

We note that fo' IK(x, t)l dt = 2x(l-x) < 1 and also f' JK(x, t)I dx t2-t+2 < 2 

Now if f E LI (Q) we obtain that 
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or equivalently that 

(1.14) llZf! 1k < lIIf Ikl 

Equality will hold in (1.14) if f = X(0,1/2] -X(1/2,1) because (Zf)(x) =-XX(o,1/2] - 

(1 - X)X(1/2,1) and IlZf Iloo = = 2 lIf Il0o. Iff E L1(Q) we have 

(1.15) llZf II , </ [if (t) l IK(x, t) I dx] dt < lIIf Ill. 

We can see that (1.15) is sharp by taking f = X(O,e] - X(1-e,1) for 0 < E <, for 
which (Zf)(x) = -xX(o -EX[-,1-e]-(1-x)X(1-e,1). Thus, IlZf!Ii = E - E = 

2- 2)UlfII. 
Finally, (1.8) for the intermediate case p ? {1, 2, oo} follows by an interpolation 

argument. Namely, if 2 < p < oo, then for ca = 2/p the interpolation inequality is 

-Z<_ (1)2/P (1)-2/p 1(7r 11-2/p 

Similarly, if 1 < p < 2, then for = 2 - 2/p, 

glzllpllzllllzll_:=(12 2/p l2/p- 1 1 112p 
IIZIIP ? IlZI1211ZIl 1)-/ 1)/- 1 ()I- /P 

Remark. For p ? {1, 2,oo} we do not know the norms IITIlp and IIZIIp. We 
believe, though, that the method used in [7] for a related problem could be applied. 

Remark. If L: LP(a, b) -- Wod (a, b), 1 < p < oo, is defined by 

Lf(x) = L [b-a L f (t) dt - f(s)] ds, 

then, using (1.8), we obtain that 

(1.16) 11EIIlP ' (b -a). 

2. A Decomposition of a Function with Zero Average into Functions 
with Zero Partial Averages. Let )/ = {1, 2,... , n}; we then denote by I = 

{ilI ... , ik}, k < n, a subset of )/ containing k elements, for which we write II = k. 
We use lower-case Greek letters for multi-indices, e.g., -y = (1,... , an) where -Yi 

are nonnegative integers and I -I = -11 + +-Yn. The standard notation is used: -y < 

ca when -Yi < ai for each 1 < i < n; -I! = a11! a . 'yn! denotes the multidimensional 

factorial and (a) = (ni)... (an) denotes the multidimensional binomial coefficient. 
As usual, ek is the standard "basis" multi-index ek = (0, . . , 1,... , 0). 

Let Q be an interval in Rn, n > 1, i.e., 

Q = x = (xl, .,Xn): ai < xi < bi, i E NJ/, 

where ai, bi are finite, ai < bi for i E J/, and let Q denote the closure of Q. 
We will write xl = x1. xln and ax = (a1xi,..., anxn) for any multi-indices 

'y and a. 

The sets Q+ = {XEQ Xk= bk} and Qk = {x E Q: Xk=ak} for 1 < k < n 
are called faces of Q, and these sets constitute the boundary aQ = U-n= (Q+ UQk) 

of Q. 
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For i E )1, LiP(Q) stands for the subspace of LP(Q) consisting of functions 
independent of the xi-variable. More generally, LP (Q) = LP (Q) n ... nLP (Q) if I = 

i1, ..ik }. Thus LI (Q) contains those functions in LP (Q) which are independent 
of Xi .... ,Xik* 

We introduce now the operators Pi: LP (Q) -- LP (Q) for i E )/ by 

(2.1) (Pif)(x) = bi - a I f(x) dxi 

and call them averaging projectors. For I = {i1,... ,i k} we denote PI: LP (Q) 
LP(Q), where 

(2.2) PI = pil Pi2 Pik 

Consequently, Pg f = 1QK fQ f(x) dx, and we set Po = Id. The mean value 

IQK-1 fQ f(x) dx will also be written as fQ f(x) dx. Here IQI denotes the volume of 
Q, that is, IQI = Hn=-(b -ai). 

It follows from Fubini's theorem that the operators PI and Pj commute and 
that 

(2.3) PIPJ = PIUJ 

for all I c )/ and J c J/. 
Moreover, for every f E LP(Q) and g E Lq(Q), where 1 < p, q < oo and 

l/p + l/q = 1, we have 

(2.4) f (x) (PIg) (x) dx = f (PIf )(x)g(x) dx. 

To see this, denote dx1 = dxil dxik for I = {i1, .ik and 

IQ f (Pg) dx [f(P)dxi] dxg_ = f [(Pig) f dx] dxg1_ 

[(fIgx) (Pf)] dx- = f [(PIf)gdxI] dxj 

= JPf)gdx 

If p = 2 then PI is the orthogonal projector from L2(Q) onto L2(Q), while Id - PI 
is the projector onto ker PI. Moreover, by (2.4), PI is selfadjoint. We find that 

(2.5) IIPII1P = 1 

for I C J/ and 1 < p < oo. Consequently, 

IlId - Pillp < 2. 

The last inequality is sharp only for p = 1 and p = oo and I :$ 0. Indeed, if p = 2 
we have lId - PI'2 = 1. Hence by interpolation, 

(2.6) IlId - Pillp < 211-2/pl < 2 

for all 1 < p < oo. 
Next we introduce the operators Tk, which play a key role further on. For 

1 < k < n, we set 

(2.7) Tk = (Id - Pk)T, 
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where 

TnIE(- ) T = nE(n- E pI 
n'9=0S ~~III=.s 

Note that 

(2.8) (Id - Pk) PI PI PIU{{k} if k e I, 

Therefore, Tk can be written as 

(2.9) Tk= 1 (n- 1: E(PI-PIU{k}) 8=0 ~~~III=s9 
kMI 

We state now the basic properties of operators Tk. 

PROPOSITION 1. The following identities hold: 
n 

(2.10) E Tk = Id-P P, 
k=1 

and, for all 1 < k < n, 

(2.11) PkTk = 0. 

Proof. Assertion (2.11) follows directly from the definition (2.7). Next, by simple 
combinatorial arguments, we see that 

n 

E PIU{k} = (s + 1) Pi 
k=1 III=s IJI=8+1 

kMI 

and 
n 

,: , PI = (n -s) 1: PJ, 
k=1 III=s IJI=s 

kMI 

for 0 < s < n -1. 
To prove (2.10), we change indices in the summation in (2.9): 

n 1 n-1 (n-1)- 

ETk =- (n - s)( ) E PJ - (-+) E PJ 
k=1 n'0 IJI=.s Iji=s+1 

IJI=0 IJI=n = E Pi -s (n - Pi_s(n 1 t 
jjj=0 IJI=n~ ~ ~ ~~~~~II= 

= Id-P'V 

since (n - ) (n 1)1 = 
- 
1) for 1 < s < n - 1 in the last summation. 0 
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The norms of the operators Tk can be estimated using (2.5) and (2.6). Clearly, 

1 n-1n-V1 1 
(2.12) Tk = (Id - Pk)- LK) EPI, n '9=0 8 

~III=s9 
kMI 

and hence 

1 n-1 n-1 - (2.13) I~~ITk Ilip ? IIId -Pk Ip -E (~) 
(2.13) 

n s=0 kM 
kiZI 

I lId -Pk llP < 211-2/pI 

for 1 < k < n and every 1 < p < oo. 
The operators Tk provide us with an explicit decomposition of a function with 

zero average into functions with zero partial averages: 

LEMMA 2. (A Decomposition Lemma.) For every w E LP(Q), where 1 < p < 
oo, and for 1 < k < n, 

nr 

(2.14) ETkw= w(x) dx, 
k=1 

(2.15) PkTkW = 0, 

(2.16) IITkwllp < 21l-2/pIlIlII. 

Furthermore, the decomposition (2.14) is optimal in L2(Q), that is, if w E L2(Q) 
and wk E L2 (Q) are such that 

n 

(2.17) E Wk = W w w(x) dx 
k=1 

and 

(2.18) PkWk = O for 1 < k < n, 

then 
n n 

(2.19) S IITkwII2 
< 1 

IIwk112. 
k=1 k=1 

Proof. The relations (2.14) and (2.15) follow automatically from (2.10) and (2.11) 
in Proposition 1, while (2.16) follows from (2.13). To prove optimality (2.19), we 
denote vk = Tkw - Wk. Clearly, E Vk = 0 and PkVk = 0 for 1 < k < n. Then, 
since Tk are selfadjoint, 

n n n 

>iE VkTkw = wE TkVk = w E T(Id-Pk)vk 
Q k= 1 k=1 k=1 

I TVk wT (E Vk) =0 

This shows that 
n n 

] S lTkwl2 E WkTkWs 
Qk=1 Qk=1 



222 T. IWANIEC AND A. LUTOBORSKI 

Using the Schwarz inequality, we find that 

n n~( 1/2 ( n 1/2 

I E ITkWI2 < ( E ITkWI2 E lWk1)2 k=1 -~f k=1 Jk=7 1 
which completes the proof of (2.19). 0 

3. Expansion of Euler-Maclaurin Type. The averaging projectors will now 
be used to solve the following problem: Given f E LP (Q), find a vector field 
Z = [Zl .. IZn I Zi ELP (Q), 1 < i <n, such that 

n 

(3.1) E E Zk(x)Dkg(x) dx = f-/ f(x)g(x) dx, 
Q k=l Q 

for every g E Wlq(Q), 1 < p, q < oo, 1/p + l/q = 1. 

Note that the test functions g are not required to be in WO1,q (Q). That is why the 
necessary condition of solvability of (3.1) is fQ f (x) dx = 0. Clearly, (3.1) implies 
the equation 

n 

(3.2) divZ= E DkZk = f, 
k=1 

where the derivatives DkZk are understood in the sense of distributions. 
In what follows, for f = fQ w(x) dx - w we construct explicitly a solution Z = 

[Z1,... , Zn] of (3.2) such that Zk, 1 < k < n, has partial derivative DkZk in LP(Q) 

and zero trace on Qk+ U Q-. For such a solution Z, the equations (3.1) and (3.2) 
will be equivalent. 

We define first the partial antiderivative operators Sk, 

Xsk 

(3.3) (Sk f)(X) = f (Xli I ** Xk-l, t, Xk+l i ... ., Xn) dt, 
ak 

for x=(X1,...,Xn)EQ, 1<k<n. 

Directly from the definition, we have 

(3.4) (Skf)(X) = { f f x e 
0 if x e Q-. 

For w E LP(Q) we introduce the vector field Z(w), Z(w) = [Zlw, . . , Znw], which 
is defined on Q by 

(3.5) ZkW = -SkTkw for 1 < k < n, 

or more explicitly, 

(3.6) ZkW = 
-1) E Sk(PIU{k1 PI)W. n S8 

S=0 III=s 

Lemma 2 implies that 

n 

(3.7) div Z(w) = -ETkW= w(x) dx -w, 
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and therefore Z(w) defined in (3.5) solves (3.2) for f = fQ w(x) dx - w. From (3.4) 

and (2.15), Zk(w) vanishes in Qk+UQ -, so integrating by parts for any g E W1q (Q), 
we get 

(3.8) - div Z (w)(x)g(x) dx = f (Zkw)(x)Dkg(x) dx. 
Q Q ~~~~k= 1 

Hence we obtained the first-order terms in the expansion of Euler-Maclaurin type: 

LEMMA 3. If w E LP(Q) and if g E W1q (Q), 1 < p, q < oo, 1/p + 1/q=1, 
then 

(3.9) f w(x)g(x) dx- f w(x) dx f g(x) dx = | (Zkw)(x)Dkg(x) dx. 

Q Q Q ~~~~~~~k=1 
We can now analyze the recursive use of the formula (3.9). 

LEMMA 4. (Higher-Order Expansion of Euler-Maclaurin Type.) If w E LP(Q) 
and g E WN+l,q(Q), 1 < p, q < 00, 1/p + 1/q = 1, then 

f w(x)g(x) dx = , a-, (w)f D-g(x) dx 

(3.10) 0<1-11<N 

+ ( f(zIw)(x)DI g(x)dx, 
1Il=N+1 Q 

where the operators Z.,: LP(Q) -- LP(Q) are defined by 

(Id if (0,...,l), 

(3.11) = Zk if o = l. ... O) = ek, 

E 
ZkZ= 

-ek if 
Y 

> (0, ... k=1 

and Z., is null if at least one component of the multi-index -y is negative. The 
coefficients a. (w) for y > (0, . .. , 0) are given by 

(3.12) a-, (w) = f(Z,w) (x) dx 

and can be computed explicitly in terms of moments of w by 

(3.13) a-(w) = !E (') BI_p(b - a)f-P f(x - a)Pw(x) dx, 

where B, = B 1* Ban and Bk is the kth Bernoulli number. 

Proof. We prove (3.10) by induction with respect to N. When N = 0 then (3.10) 

reduces to (3.9). Suppose that (3.10) holds for N - 1, that is, 

|w(x)g(x) dx = , a-,(w)f D79(x)dz+ E f (Z.w)(x)D7g(x)dx. 
Q ~~~~0<1-11<N-1 Q1l11=NQ 

We now apply Lemma 3: 

/ (Z.,w)(x)D" g(x) dx = f(Z.,w)(x) dx / D-g(x) dx 

n 

+ E /(ZkZ w)(x)DkDIg(x) dx. 
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Summing up the above equalities over all I-i1 = N, we get 

E f (Z..,w)(x)JDXg(x)dx = a-,(w) f LPg(x) dx 
I? Q II=N JQ 

n 

+ | (ZkZ,4-ekw) (X) Di g (x) dx 
I1sI=N+1 Qk= 

I=E a-, (w) DJ Jg(x) dx 
III=N Q1 

+ E 1 (Z,,w) (x)Dig(x) dx. 
1,01=N+l 

This proves (3.10) and (3.12). Finally, (3.13) is obtained by testing (3.10) with 
g = g, a product of scaled Bernoulli polynomials, cf. [1], namely we set 

g5(x) = I (v ) B,,p(x - a)P(b -a)-P. 

Substituting g, into (3.10) we obtain (3.13), since we can check that 

IQDg. g(x) dx 0 (O1 O< B<-,Iy7 -,: 

-!if ,3= rn 

Remark. (3.11) yields that for any s > 0, ZI = > 1 ZQZ5 a 
It is also possible to obtain the estimate of the norm of the operator Z. which 

generalizes the one-dimensional estimate (1.16). 

PROPOSITION 2. If 1 < p < oo then 

(3.14) IIZ5IIP < '! (b -a) 
2V?y 

for any multi-index -y. 

Proof. Induction with respect to 1'l4 If 1-l = 0 then Z. = Id and (3.14) is 
an equality. If 1'4 = 1, say -y = ek, then Z, = Zk, and then by (1.16) IlZkllp < 
2(bk-ak). For I'YI > 1, -y=(-Yi,.. yn),we obtain 

n n 

IIZ-YIIP = ZkZ,-y - ek < Z: I1pIZiI-pI~ek IIP 
k=1 p k=1 

< E 2 (bk - 2ak) V1w1! b - 2K?I ! (b -a) C 

The question of the validity of expansion (3.10) as N -- oo is another problem. A 
set of sufficient conditions for convergence are given in 

PROPOSITION 3. Let 1 < p, q < oo, 1/p + 1/q = 1; then for every w E LP(Q), 

(3.15) fw(x)g(x)dx= E a, (w)f DJXg(x)dx, 
Q O<?I1 I 
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provided g E C? (Q) satisfies the following growth condition: 

JIDIDgllq < Cd- glD7ilq< C(b - a)- X 

for any -y=(-Y1i,..., Yn), wherec>0andd =(di...dn) dj > , di+ +dn< 2. 

Proof. Naturally, the main step in proving the convergence of (3.10) is to estimate 
the remainder term RN+1 (W; 9), where 

RN+1(W;9) = E f(Z, w)(x)DI g(x) dx. 
1?I=N+l 

Using (3.14) and the binomial formula, we obtain 

IRN+1 (W; 9)1I < E IIZ-,wllp llDlgllq 
1iI=N+l 

S , 
+l 

(b a)j (b- a) II 

I=N+ili d1 + +dn +1 

and hence, because of the condition d1 + . + dn < 2, it follows that 

lim RN+1(W; 9) = 0 0 
N-oo 

4. Asymptotic Expansion of Integrals of Rapidly Oscillating Func- 
tions. The expansion in powers of m-1 of the Fourier integrals 

f cos(2wrmx)g(x) dx, 1 sin(2wrmx)g(x) dx 

of a smooth function g are well known, cf. [6], [5]. If m is large, the integrands are 
usually referred to as rapidly oscillating functions and, for example, 

f cos(2wrmx)g(x) dx E 9 1) j g(2q) (x) dx 
q= 1 

+ (2( )2p f (cos(27rmx) - 1)g(2 )(x) dx. 

Expansions of integrals f0' w(mx)g(x) dx with more general rapidly oscillating fac- 
tors w(mx) of period m-1 were derived and studied in [2]. Our purpose is to derive 
similar asymptotic expansions for multiple integrals of rapidly oscillating functions 
on an interval in Rn. Let Q = {x = (x1, . . . ,xn): ai < xi < bi, i E AI} be an inter- 
val and h: Q -- R. By h we mean the periodic extension of h, which is defined al- 
most everywhere on Rn, that is h(x) = h(x) for x E Q and h(x) = h(X+(bk -ak)ek) 
for 1 < k < n and almost every x E R'. For our purposes, there is no need to 
define h on the whole R'. This is because h is used under an integral sign. 

We will consider an integral I,(w; g) = fQ w7(ax)g(x) dx, where w E LP (Q), ax = 

(U1xl, ... ., nXn) and a = (a1, .. ., Un) is a multi-index with big components. Such 
integrals occur as energy integrals in mechanics of composite media, cf. [3]. 
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Our expansion formula of Euler-Maclaurin type is given in 

THEOREM 1. Let w E LP(Q) and g E WN+l'q(Q), where 1/p + 1/q = 1, 1 < 
p, q < oo. Then 

ITJ(ux)g(x) dx= j -aI(w) D-ig(x) d 
al 

(4.1) I0<1yl<N 

+ J I +1 (Zyw)(ax)D g(x) dx, 
Q1lyl=N+l 

where aI (w),ZIw are defined in (3.12) and (3.11), and a = (aj,...,aI) is an 
arbitrary multi-index. 

Proof. Expansion (4.1) follows from Lemma 4 by standard scaling arguments. 
Namely, applying (3.10) to the function W(x) = w7(ax), one gets 

f W(ax)g(x)dx= E aI (W)f D-g(x)dx 
Q O~~~~<1-l<NQ 

+ | E (ZIW)(x)D g(x) d. 
QII=N+1 

What remains to be proved is that for x E Q 

(4.2) (ZI W)(x) = - (ZI w)(ax). 

According to the recursive definition of Z. it is sufficient to show that 

(ZkW) (X) = -(ZkW) (ox), 
Uk 

for each k = 1, ... .,n. 
The above, however, follows from (TkW)(X) Tkw(ax) and Zk =-SkTk by an 

affine change of variable. Finally, 

a? (W) = f(ZIW) (x) dx = 7 f(Zw) (ax) dx 

- f ?a(ZIw)(x)dx a(w). 

We note that the standard result on the asymptotic behavior of I, (w; g), cf. [3, 
page 9] is 

(4.3) lim |w-(ax)g(x) dx = f() dx g(x) dz 

an -400 

This limit agrees with the zero-order term in (4.1). From Theorem 1 there follows 
directly the following: 

PROPOSITION 4. Let w E LI (Q), and let g E WN+1,1 (Rn); then 

W(ax)g(x) dx -7a(w)] D g(x) dx 

+ JRn Z 47( Zw) (o)D7g(x) dx 
1yiI=N+1 

fo,r na, ny multi-i,n doex - =(r. .r . 
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It is to be noted that (4.4) remains true also when al,... , a, are arbitrary 
positive numbers not necessarily integers. If N = 0, (4.4) gives that 

(4.5) liimf w7(x)g(x) dx = (f w(x) dx) (I g(x) dx) 

an -o00 

which for n = 1 is known as Fejer's formula. 
It is also possible to give a set of sufficient conditions for the convergence of the 

expansion in Theorem 1. 

PROPOSITION 5. Let 1 < p,q < oo, 1/p + 1/q = 1, w E LP(Q), and assume 
that g E C??(Q) satisfies the growth condition: There exists a vector c = (cl,... , c") 
such that ID5gIlq < c? for any - = (-yi ... , n) Then 

(4.6) f w(oz)g(x)dx= E ?a,,(w)f D7g(x)dx, 

provided i, ... ,,u are large enough to satisfy 
n 

Ck(bk - ak) < 1 

Proof. Along the lines of Proposition 3, denote 

RN+1(W; 9) = | IN E J7(Zyw) (ax)D g(x) dx; 

since fQ I(Z(w)(Ix) Pdx = fQ IZyw(x)IP dx we have that 

jRN+1 (W;g9)I ? j - ( l(Z-yw) (ax) IP dx) JID"glIq 
I7j=N+1 Q 

< (iE a)"I(b - ai w 
kIlij=N+1 .2k11c 1lp 

n 
Ck(bk- ak)) N+1 

E ll~~~~~'wlip. 1 

An interesting discussion of the pitfalls in using asymptotic expansions of the 

type (4.6) directly in numerical integration is given in [5]. Troubles arise when the 

assumptions of Proposition 5 are violated. 
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